Art.67a– Teoria degli orbitali e paradossi della meccanica quantistica — Antonio Dirita

per approfondimenti      www.fisicauniversale.com/wp

Prima di esemplificare quanto abbiamo detto nell’   Art.67     con casi reali, vogliamo ancora analizzare alcune interpretazioni discutibili del
principio di indeterminazione.
Secondo la teoria che abbiamo esposto, studiando, in una struttura atomica, una transizione tra due livelli, l’indeterminazione sui valori
ad essa legati non sono delle grandezze variabili, ma valori ben definiti legati alla transizione in esame.
La meccanica quantistica, trascurando l’origine, che noi abbiamo richiamato, utilizza il principio di indeterminazione
nella forma :

                                 ΔR ⋅ ΔP = h     ;      ΔE ⋅ Δt = h
1
——————————————————————————————————————————————————————————————————
dove erroneamente alle indeterminazioni viene dato il significato di
variabili 
continue, aventi intervallo di definizione 0 →  .

Con questa interpretazione, la ” definizione classica di orbita “ perde il suo significato per diventare il valore del raggio in
corrispondenza del 
quale è massima la probabilità di trovare la particella.
Anche il ” significato classico di particella “ sull’orbita cede il passo alla probabilità di trovare la particella ( ) in un certo tratto
dell’orbita.
La prima tesi approda alla teoria degli orbitali che risulta in contraddizione con molte osservazioni sperimentali, tra le quali
certamente la più importante è la incontestabile stabilità assoluta degli atomi nel tempo.

Una importante e vistosa osservazione astronomica che contraddice questa tesi è anche la seguente.

Le masse inerziali dell’atomo di idrogeno e del Sole,  determinate nelle stesse condizioni , dunque con lo stesso significato
fisico,
qualunque esso sia, sono note :

                         mH = 1,67353404 ⋅ 10– 27 Kg     ;    ms = 1,989085 ⋅ 10³⁰ Kg

Il numero di atomi di idrogeno presenti nel Sole risulta :

                               Ns = ms/mH = 1,1885536 ⋅ 10⁵⁷ atomi

Considerando il Sole come una sfera di idrogeno metallico, ( dunque con gli atomi perfettamente a contatto fra loro )  il cui raggio vale

rs = 695843 Km , per il raggio dell’atomo di idrogeno,  si ottiene il valore :

tenendo conto della sfera planetaria dell’elettrone, il raggio dell’orbita sulla quale si muove l’elettrone, risulta :

2
——————————————————————————————————————————————————————————————————
Questo valore coincide perfettamente con il raggio dell’orbita
fondamentale dello spazio rotante protonico, senza alcun aumento,
come suggerirebbe 
la teoria degli orbitali.

Infatti, se si riporta su assi cartesiani l’accelerazione radiale, che agisce sullo elettrone in orbita, in funzione della distanza dal centro del
protone  (   Art.30   ), si ottiene un andamento che presenta una forte dissimmetria rispetto alla
posizione di equilibrio,
come è indicato in figura.

Conseguenza di questa dissimmetria è una maggiore probabilità di trovare l’elettrone spostato verso
l’esterno piuttosto che verso l’interno dell’atomo.

Essendo molto elevato il numero di atomi presenti nel Sole, qualsiasi valore della deviazione dall’orbita fondamentale, anche molto
piccolo,
  se è presente viene messo in evidenza.
Il valore del raggio che abbiamo ricavato ” mette invece chiaramente in evidenza che
questo non si verifica “.

Incidentalmente notiamo che il calcolo mette anche in evidenza l’inesistenza al centro del Sole di un nucleo avente densità uguale a
circa 
150 g/cm3  , stimato dalle più accreditate teorie scientifiche correnti.

Un’altra evidenza sperimentale in contraddizione con la teoria degli orbitali è la unicità della frequenza della radiazione emessa
in corrispondenza di una 
qualsiasi transizione di qualsiasi atomo.

14
——————————————————————————————————————————————————————————————————

Con riferimento alla figura, osservando la stabilità degli atomi, diciamo che, in quello di sinistra, l’elettrone   e  è in equilibrio sull’orbita
circolare stabile dello spazio rotante generato dal protone P₁ , con le caratteristiche orbitali definite perfettamente e costanti nel tempo,
anche se possiamo non conoscere con precisione il loro valore.

Questo vuol dire che riteniamo soddisfatti, in ogni momento, i principi di conservazione,
senza verificarlo.

Senza dimostrarlo, affermiamo quindi che l’elettrone, per passare dal punto  A al
punto C  deve percorrere il tratto di circonferenza.

Anche se apparentemente arbitraria, questa affermazione è avallata dal fatto che non conosciamo un solo caso in cui i principi di
conservazione non siano stati verificati.
Secondo la teoria degli orbitali, negli atomi non è possibile distinguere una condizione di equilibrio stazionario, su orbite circolari stabili.
Questo vuol dire che si verificano continuamente transizioni durante le quali i principi di conservazione potrebbero essere violati.
Anzi, secondo tale teoria, le transizioni spontanee negli atomi avvengono con tale frequenza da impedirci di definire con precisione
la
traiettoria, che viene 
così indicata solo in termini probabilistici.
3
——————————————————————————————————————————————————————————————————
In definitiva, si presenta la seguente situazione.
Sperimentalmente non è mai stato possibile cogliere una particella durante la fase di transizione per verificare le sue condizioni di moto.

I principi di conservazione, vengono sempre verificati in qualsiasi circostanza ed in qualsiasi campo e si
ritiene che vengano violati nel solo
caso che non riusciamo a studiare.

Un pensiero certamente meno discutibile può essere quello di ritenere
che i principi di conservazione siano verificati ” anche quando noi non
riusciamo a dimostrarlo “.

Riferendoci sempre alla figura, secondo la teoria degli orbitali, si ipotizza una probabilità finita che l’elettrone, per passare dal punto  A
al punto C  ” chieda in prestito al protone “ una quantità di energia pari al valore di estrazione per poter arrivare nel
punto ,
  che vale :
                                         ΔEe = (1/2)⋅ me⋅ V1².

Il protone P₁ ” concede il prestito “ con la condizione che l’energia gli venga restituita ” prima che esso possa accorgersi
dell’ammanco “.

In pratica l’elettrone chiede di non rispettare i principi di conservazione per un tempo
tanto piccolo da soddisfare il principio di indeterminazione (  Art.67    ).

A parte la verifica dei meccanismi reali attraverso i quali queste operazioni si possono realizzare, quando l’elettrone giunge nel punto B
con velocità nulla, si trova in perfetto equilibrio e presenta quindi una elevata probabilità di non ritornare a saldare il debito.
Inoltre, nel punto  B  l’elettrone si trova con due protoni P₁ e P₂ in una posizione assolutamente simmetrica e non ha nessuna
giustificazione teorica per dover tornare nel punto  C  per cui nel  50%  dei casi si dirige nel punto  D .
Tutto questo risulta in contraddizione con la assoluta stabilità degli atomi.
Inoltre, queste continue transizioni darebbero origine ad un’accelerazione radiale con emissione di onde elettromagnetiche e conseguente
perdita di energia da parte della particella che
dovrebbe così cadere nel nucleo , fatto che non è mai stato
verificato.

4
——————————————————————————————————————————————————————————————————

Un altro uso molto discutibile del principio di indeterminazione è quello che lo chiama in causa per poter generare particelle
elementari
dal nulla e dare così origine alla materia presente nell’universo.

Secondo molti studiosi, lo ” spazio vuoto “ nel quale si evolve l’universo, non è poi così vuoto come finora è stato immaginato.
Esso va pensato, in realtà, come un oceano di particelle subatomiche libere, le quali interagiscono tra loro, creando una continua
e
casuale
fluttuazione di energia ? Vediamo il discorso con qualche dettaglio in più.

Fissato il valore Es dell’energia richiesta per la sintesi della coppia formata da particella e antiparticella  (    Art.55a    e    Art.55b   ) , se in
un punto dello spazio la fluttuazione supera il valore  Es  , si genera una coppia che, in un tempo molto breve, e comunque tale da
soddisfare il principio di indeterminazione, restituisce allo spazio l’energia  Es  attraverso il processo di annichilazione.

Facciamo notare che questi processi s’intendono realizzati in uno spazio che viene indicato come ” vuoto quantistico “, intendendo con
questo lo spazio nel quale, non è presente materia organizzata (alla quale la definizione di energia è riferita).
Non sono dunque presenti i necessari spazi rotanti con orbite quantizzate tra le quali si possono verificare transizioni di particelle.
Non si potrebbe quindi avere emissione di radiazioni.
Esse vengono tuttavia rese possibili dicendo che le particelle libere, vaganti in questo oceano vuoto, ” non sono reali ” , ma
” virtuali “
, in quanto hanno una vita tanto breve da non essere rivelabili.
In base al principio delle osservabili, esse non esistono e, in questo senso, lo spazio rimane
vuoto.

Dato che i processi di generazione e annichilazione non sono simmetrici,
uno dei due prevale e si genera così materia dallo spazio vuoto ( dunque si genera energia ? ).
5
——————————————————————————————————————————————————————————————————
Analogo discorso viene fatto per l’evaporazione dei buchi neri.
Le osservazioni che si possono fare a queste tesi, senza alcun supporto teorico e sperimentale, sono davvero molte. Noi ci limitiamo ad
alcune tra le più significative.
La teoria degli spazi rotanti mette in evidenza come i processi di sintesi e di annichilazione siano casi limiti di transizione tra livelli
stazionari 
e dunque si realizzano solo all’interno di uno spazio rotante quantizzato e non uno qualsiasi, ma quello capace di trattenere
sulle orbite stazionarie le particelle che vengono sintetizzate, consentendo loro di verificare i principi di conservazione).
Questa circostanza, tra l’altro, è ampiamente nota e verificata quotidianamente in tutti
gli istituti di ricerca di fisica nucleare.

Le particelle libere, come abbiamo visto, non sono soggette a quantizzazione delle caratteristiche, quindi i loro valori non sono soggetti a
indeterminazione di principio. La conoscenza del loro valore è dunque limitato unicamente dagli errori strumentali.
Purtroppo, queste particelle non sono in uno stato stazionario, ma in continua evoluzione e quindi, per definire il loro stato, siamo costretti
a rilevare tutte le caratteristiche simultaneamente, con un unico strumento.
Per la scelta dello strumento, dobbiamo stabilire, in rapporto al problema che si sta trattando, il livello di perturbazione Δ% del sistema
che viene ritenuto accettabile.
Sostituendo nell’espressione degli errori abbiamo quindi :  
Nel nostro ragionamento, la vita media delle particelle generate deve essere minore della risoluzione dello strumento di misura, in modo
che sia impedita la loro rivelazione.
Se come strumento utilizziamo un oscillatore, sarà dunque necessario che la frequenza ν della radiazione emessa soddisfi la relazione :
     
6
——————————————————————————————————————————————————————————————————
E’ chiaro che le particelle generate potranno essere considerate ” virtuali ” solo se riescono a sfuggire al controllo degli strumenti teorici
più precisi che riusciamo ad immaginare.
La risoluzione più elevata che possiamo concepire è quella che si ottiene con la radiazione che viene emessa dal processo di
annichilazione di una coppia protone — antiprotone nello spazio rotante nucleare :
         
Questo valore rappresenta l’intervallo di tempo minimo che si può concepire, con un significato fisico.

Questa radiazione perturba il sistema che l’assorbe con un valore di energia         ΔE = 2 ⋅ mp⋅ Cl² = 1876,5 MeV

essa sarà dunque utilizzabile con successo solo nei processi che mettono in gioco una energia     Es >> 1876,5 MeV .

Se consideriamo la sintesi della coppia elettrone — positrone, dovrà essere :            Ese = 1,2 MeV .

Per evitare che lo strumento stesso dia un contributo significativo al processo di generazione, assumiamo   Δ% = 1.
L’oscillatore dovrà avere quindi una frequenza :  
7
——————————————————————————————————————————————————————————————————
Per non essere rivelate, le particelle dovranno avere una vita media minore di
       
decisamente maggiore del minimo valore misurabile con altri strumenti.

Nell’analisi che abbiamo fatto, è certamente singolare il fatto che si consideri
fisicamente significativo, dunque definibile , solo
ciò che si
riesce a misurare, anche se solo
con strumenti ideali, e successivamente, s’invochi l’ impotenza degli stessi strumenti per
imporre
l’esistenza di particelle non rilevabili.

Concludiamo queste brevi note riassumendo e precisando quello che è stato finora detto, al fine di eliminare l’alone di mistero che circonda
il principio di indeterminazione.
Abbiamo visto che il problema delle indeterminazioni nasce quando si vuole conoscere lo stato di moto di una massa nello spazio.
Vale comunque una regola generale, non legata al problema che si analizza :

Il principio di indeterminazione è verificato sempre, in qualsiasi caso, solo quando si
utilizza, come strumento per il rilievo delle misure una, 
radiazione elettromagnetica.

Si possono presentare diversi casi, ciascuno dei quali richiede un approccio diverso, per il rilievo delle caratteristiche.
1 — massa in equilibrio stazionario :
Le misurazioni si possono effettuare in tempi diversi con strumenti diversi, che vengono scelti opportunamente, in rapporto al problema
in esame. In questo caso gli errori sono solo strumentali e senza particolari vincoli.

2 — massa in transizione tra due stati stazionari quantizzati :
Questa situazione si verifica solo nelle particelle in orbita nei sistemi atomici e subatomici. La nostra incapacità di cogliere la particella
durante le transizioni ci consente di effettuare i rilievi delle caratteristiche solo negli stati stazionari di partenza e di arrivo, come è indicato
nel caso (1-).

8
——————————————————————————————————————————————————————————————————
La differenza tra i valori rilevati costituisce l’incertezza, che verifica il principio di indeterminazione.

3 — massa in evoluzione libera nello spazio :
Se l’evoluzione è lenta, come generalmente accade per le masse ordinarie, è possibile trattare il problema come stato quasi stazionario.
se invece l’evoluzione è rapida, si impone il problema di dover effettuare il rilievo delle misure delle diverse grandezze ” simultaneamente
e con strumenti poco invasivi “.
Si tenga presente che, per definire le condizioni di un sistema in evoluzione molto rapida è più importante la simultaneità dei rilievi della
precisione delle singole misure.
La certezza di effettuare rilievi simultanei si potrà avere solo utilizzando un solo evento con un solo strumento per tutte
le grandezze.

Noi conosciamo un solo strumento capace di essere nello stesso tempo un buon metro,
un buon orologio, una buona bilancia :

la radiazione elettromagnetica, che presenta caratteristiche aventi una grande stabilità e legate dalle relazioni che caratterizzano i livelli
tra i quali avviene la transizione che la genera.
     
da queste relazioni si ricavano le seguenti.
      
Si noti che l’evento che viene utilizzato, in tutti i problemi, è sempre lo stesso, l’effetto Compton.
Si provoca una interazione della radiazione scelta con la particella in esame, si impongono i principi di conservazione e, con il calcolo, si
ricavano tutte le caratteristiche della particella iniziale.
9
——————————————————————————————————————————————————————————————————

 Art.67a– Teoria degli orbitali e paradossi della meccanica quantistica — Antonio Dirita

Lascia un commento